Skip to content

primelunch#

PrimeLunch Utils

PrimeLunch #

Bases: LunchableApp

PrimeLunch: Amazon Notes Updater

Source code in lunchable_primelunch/primelunch.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
class PrimeLunch(LunchableApp):
    """
    PrimeLunch: Amazon Notes Updater
    """

    CURRENCY_LOCALES: ClassVar[dict[str, str]] = {
        "$": "en_US.UTF-8",
        "€": "de_DE.UTF-8",
        "£": "en_GB.UTF-8",
    }

    def __init__(
        self,
        file_path: str | os.PathLike[str] | pathlib.Path,
        time_window: int = 7,
        access_token: str | None = None,
    ) -> None:
        """
        Initialize and set internal data
        """
        super().__init__(access_token=access_token)
        self.file_path = pathlib.Path(file_path)
        self.time_window = time_window

    @staticmethod
    def models_to_df(models: Iterable[LunchableModel]) -> pd.DataFrame:
        """
        Convert Transactions Array to DataFrame

        Parameters
        ----------
        models: List[LunchableModel]

        Returns
        -------
        pd.DataFrame
        """
        if not isinstance(models, list):
            models = list(models)
        return pd.DataFrame(
            [item.model_dump() for item in models],
            columns=models[0].model_fields.keys(),
        )

    @staticmethod
    def df_to_models(
        df: pd.DataFrame, model_type: type[LunchableModelType]
    ) -> list[LunchableModelType]:
        """
        Convert DataFrame to Transaction Array

        Parameters
        ----------
        df: pd.DataFrame
        model_type: Type[LunchableModel]

        Returns
        -------
        List[LunchableModel]
        """
        array_df = df.copy()
        array_df = array_df.replace(np.nan, None)
        model_array = array_df.to_dict(orient="records")
        return [model_type.model_validate(item) for item in model_array]

    def _remove_subtotal_row(self, amazon_df: pd.DataFrame) -> pd.DataFrame:
        """
        Inspect the last row of the dataframe and delete it if any of its values
        contain the string "=SUBTOTAL".

        Parameters
        ----------
        amazon_df : pd.DataFrame
            The dataframe to inspect and potentially modify.

        Returns
        -------
        pd.DataFrame
            The potentially modified dataframe.
        """
        if amazon_df.iloc[-1].astype(str).str.contains("=SUBTOTAL").any():
            amazon_df = amazon_df[:-1]
        return amazon_df

    @classmethod
    def currency_to_float(cls, currency: str) -> float | None:
        """
        Convert a currency string to float, handling different symbols and formats.
        """
        currency_str = str(currency)
        # Detect locale from currency symbol, or use the system default
        locale_name = cls.CURRENCY_LOCALES.get(currency_str[0], locale.getlocale())
        locale.setlocale(locale.LC_ALL, locale_name)
        # Remove all non-numeric characters except for commas and periods
        currency_str = re.sub(r"[^0-9\s,\.]", "", currency_str)
        # Remove commas and periods, except for the last one
        currency_str = re.sub(r"[,\.](?=.*[,\.])", "", currency_str)
        if currency_str == "":
            return None
        try:
            return locale.atof(currency_str)
        except ValueError as e:
            msg = f"Invalid Currency Conversion: {currency!s}"
            raise ValueError(msg) from e

    def amazon_to_df(self) -> pd.DataFrame:
        """
        Read an Amazon Data File to a DataFrame

        This is pretty simple, except duplicate header rows need to be cleaned
        If the exporter included a "subtotal" row, it is removed

        Returns
        -------
        pd.DataFrame
        """
        dt64: np.dtype[datetime64] = np.dtype("datetime64[ns]")
        expected_columns = {
            "order id": str,
            "items": str,
            "to": str,
            "date": dt64,
            "total": np.float64,
            "shipping": np.float64,
            "gift": np.float64,
            "refund": np.float64,
            "payments": str,
        }
        amazon_df = pd.read_csv(
            self.file_path,
            usecols=expected_columns.keys(),
        )
        header_row_eval = pd.concat(
            [amazon_df[item] == item for item in expected_columns.keys()], axis=1
        ).all(axis=1)
        duplicate_header_rows = np.where(header_row_eval)[0]
        amazon_df.drop(duplicate_header_rows, axis=0, inplace=True)

        amazon_df = self._remove_subtotal_row(amazon_df)
        amazon_df["total"] = amazon_df["total"].apply(self.currency_to_float)
        amazon_df["shipping"] = amazon_df["shipping"].apply(self.currency_to_float)
        amazon_df = amazon_df.astype(dtype=expected_columns, copy=True, errors="raise")
        logger.info("Amazon Data File loaded: %s", self.file_path)
        return amazon_df

    @classmethod
    def filter_amazon_transactions(cls, df: pd.DataFrame) -> pd.DataFrame:
        """
        Filter a DataFrame to Amazon Transactions

        Parameters
        ----------
        df: pd.DataFrame

        Returns
        -------
        pd.DataFrame
        """
        amazon_transactions = df.copy()
        amazon_transactions["original_name"] = amazon_transactions[
            "original_name"
        ].fillna("")
        amazon_transactions = amazon_transactions[
            amazon_transactions.payee.str.match(
                r"(?i)(Amazon|AMZN|Whole Foods)(\s?(Prime|Marketplace|MKTP)|\.\w+)?",
                case=False,
            )
            | amazon_transactions.original_name.str.match(
                r"(?i)(Amazon|AMZN|Whole Foods)(\s?(Prime|Marketplace|MKTP)|\.\w+)?",
                case=False,
            )
        ]
        return amazon_transactions

    @classmethod
    def deduplicate_matched(cls, df: pd.DataFrame) -> pd.DataFrame:
        """
        Deduplicate Multiple Connections Made

        Parameters
        ----------
        df: pd.DataFrame

        Returns
        -------
        pd.DataFrame
        """
        deduped = df.copy()
        deduped["duplicated"] = deduped.duplicated(subset=["id"], keep=False)
        deduped = deduped[deduped["duplicated"] == False]  # noqa:E712
        return deduped

    @classmethod
    def _extract_total_from_payments(cls, df: pd.DataFrame) -> pd.DataFrame:
        """
        Extract the Credit Card Payments from the payments column

        There is quite a bit of data manipulation going on here. We
        need to extract meaningful credit card transaction info from strings like this:

        Visa ending in 9470: September 11, 2022: $29.57; \
        Visa ending in 9470: September 11, 2022: $2.22;
        """
        extracted = df.copy()
        extracted["new_total"] = extracted["payments"].str.rstrip(";").str.split(";")
        exploded_totals = extracted.explode("new_total", ignore_index=True)
        exploded_totals = exploded_totals[
            exploded_totals["new_total"].str.strip() != ""
        ]
        currency_matcher = r"(?:[\£\$\€]{1}[,\d]+.?\d*)"
        exploded_totals["parsed_total"] = exploded_totals["new_total"].str.findall(
            currency_matcher
        )
        exploded_totals = exploded_totals.explode("parsed_total", ignore_index=True)
        exploded_totals["parsed_total"] = exploded_totals["parsed_total"].apply(
            cls.currency_to_float
        )
        exploded_totals = exploded_totals[~exploded_totals["parsed_total"].isnull()]
        exploded_totals["total"] = np.where(
            ~exploded_totals["parsed_total"].isnull(),
            exploded_totals["parsed_total"],
            exploded_totals["total"],
        )
        return exploded_totals

    @classmethod
    def _extract_extra_from_orders(cls, df: pd.DataFrame) -> pd.DataFrame:
        """
        Extract the Credit Card Refunds and Whole Foods Orders
        """
        refunds = df.copy()
        refunded_data = refunds[refunds["refund"] > 0].copy()
        refunded_data["total"] = -refunded_data["refund"]
        refunded_data["items"] = "REFUND: " + refunded_data["items"]
        complete_amazon_data = pd.concat([refunds, refunded_data], ignore_index=True)
        complete_amazon_data["items"] = np.where(
            complete_amazon_data["to"].str.startswith("Whole Foods"),
            "Whole Foods Groceries",
            complete_amazon_data["items"],
        )
        return complete_amazon_data

    @classmethod
    def merge_transactions(
        cls, amazon: pd.DataFrame, transactions: pd.DataFrame, time_range: int = 7
    ) -> pd.DataFrame:
        """
        Merge Amazon Transactions and LunchMoney Transaction

        Parameters
        ----------
        amazon: pd.DataFrame
        transactions: pd.DataFrame
        time_range: int
            Number of days used to connect credit card transactions with
            Amazon transactions

        Returns
        -------
        pd.DataFrame
        """
        exploded_totals = cls._extract_total_from_payments(df=amazon)
        complete_amazon_data = cls._extract_extra_from_orders(df=exploded_totals)
        merged_data = transactions.copy()
        merged_data = merged_data.merge(
            complete_amazon_data,
            how="inner",
            left_on=["amount"],
            right_on=["total"],
            suffixes=(None, "_amazon"),
        )
        merged_data["start_date"] = merged_data["date_amazon"]
        merged_data["end_date"] = merged_data["date_amazon"] + datetime.timedelta(
            days=time_range
        )
        merged_data.query(
            "start_date <= date <= end_date",
            inplace=True,
        )
        merged_data["notes"] = merged_data["items"]
        deduplicated = cls.deduplicate_matched(df=merged_data)
        logger.info("%s Matching Amazon Transactions Identified", len(deduplicated))
        return deduplicated[TransactionObject.__fields__.keys()]

    def cache_transactions(
        self, start_date: datetime.date, end_date: datetime.date
    ) -> dict[int, TransactionObject]:
        """
        Cache Transactions to Memory

        Parameters
        ----------
        start_date : datetime.date
        end_date : datetime.date

        Returns
        -------
        Dict[int, TransactionObject]
        """
        end_cache_date = end_date + datetime.timedelta(days=self.time_window)
        logger.info(
            "Fetching LunchMoney transactions between %s and %s",
            start_date,
            end_cache_date,
        )
        self.refresh_data(models=[UserObject, CategoriesObject])
        self.refresh_transactions(start_date=start_date, end_date=end_cache_date)
        logger.info(
            'Scanning LunchMoney Budget: "%s"',
            html.unescape(self.data.user.budget_name),
        )
        logger.info(
            "%s transactions returned from LunchMoney",
            len(self.data.transactions),
        )
        return self.data.transactions

    def print_transaction(
        self, transaction: TransactionObject, former_transaction: TransactionObject
    ) -> None:
        """
        Print a Transaction for interactive input
        """
        transaction_table = table.Table(show_header=False)
        notes_table = table.Table(show_header=False)
        transaction_table.add_row("🛒 Transaction ID", str(former_transaction.id))
        transaction_table.add_row("🏦 Payee", former_transaction.payee)
        transaction_table.add_row("📅 Date", str(former_transaction.date))
        transaction_table.add_row(
            "💰 Amount", self.format_currency(amount=former_transaction.amount)
        )
        if former_transaction.category_id is not None:
            transaction_table.add_row(
                "📊 Category",
                self.data.categories[former_transaction.category_id].name,
            )
        if (
            former_transaction.original_name is not None
            and former_transaction.original_name != former_transaction.payee
        ):
            transaction_table.add_row(
                "🏦 Original Payee", former_transaction.original_name
            )
        if former_transaction.notes is not None:
            transaction_table.add_row("📝 Notes", former_transaction.notes)
        notes_table.add_row(
            "🗒  Amazon Notes",
            transaction.notes.strip(),
        )
        print()
        print(transaction_table)
        print(notes_table)

    def update_transaction(
        self, transaction: TransactionObject, confirm: bool = True
    ) -> dict[str, Any] | None:
        """
        Update a Transaction's Notes if they've changed

        Parameters
        ----------
        transaction: TransactionObject
        confirm: bool

        Returns
        -------
        Optional[Dict[str, Any]]
        """
        former_transaction = self.data.transactions[transaction.id]
        response = None
        stripped_notes = transaction.notes.strip()
        acceptable_length = min(349, len(stripped_notes))
        new_notes = stripped_notes[:acceptable_length]
        if former_transaction.notes != new_notes:
            confirmation = True
            if confirm is True:
                self.print_transaction(
                    transaction=transaction, former_transaction=former_transaction
                )
                confirmation = Confirm.ask(
                    f"\t❓ Should we update transaction #{transaction.id}?"
                )
            if confirmation is True:
                response = self.lunch.update_transaction(
                    transaction_id=transaction.id,
                    transaction=TransactionUpdateObject(notes=new_notes),
                )
                if confirm is True:
                    print(f"\t✅ Transaction #{transaction.id} updated")
        return response

    def process_transactions(self, confirm: bool = True) -> None:
        """
        Run the End-to-End Process
        """
        logger.info(
            "Beginning search to match Amazon and LunchMoney - using %s day window",
            self.time_window,
        )
        amazon_df = self.amazon_to_df()
        min_date = amazon_df["date"].min().to_pydatetime().date()
        max_date = amazon_df["date"].max().to_pydatetime().date()
        logger.info(
            "%s Amazon transactions loaded ranging from %s to %s",
            len(amazon_df),
            min_date,
            max_date,
        )
        self.cache_transactions(start_date=min_date, end_date=max_date)
        transaction_df = self.models_to_df(
            models=self.data.transactions.values(),
        )
        amazon_transaction_df = self.filter_amazon_transactions(df=transaction_df)
        merged_data = self.merge_transactions(
            transactions=amazon_transaction_df,
            amazon=amazon_df,
            time_range=self.time_window,
        )
        updated_transactions = self.df_to_models(
            df=merged_data, model_type=TransactionObject
        )
        responses = []
        for item in updated_transactions:
            resp = self.update_transaction(transaction=item, confirm=confirm)
            if resp is not None:
                responses.append(resp)
        logger.info("%s LunchMoney transactions updated", len(responses))

    @staticmethod
    def format_currency(amount: float) -> str:
        """
        Format currency amounts to be pleasant and human readable

        Parameters
        ----------
        amount: float
            Float Amount to be converted into a string

        Returns
        -------
        str
        """
        if amount < 0:
            float_string = f"[bold red]$ ({float(abs(amount)):,.2f})[/bold red]"
        else:
            float_string = f"[bold green]$ {float(amount):,.2f}[/bold green]"
        return float_string

__init__(file_path, time_window=7, access_token=None) #

Initialize and set internal data

Source code in lunchable_primelunch/primelunch.py
def __init__(
    self,
    file_path: str | os.PathLike[str] | pathlib.Path,
    time_window: int = 7,
    access_token: str | None = None,
) -> None:
    """
    Initialize and set internal data
    """
    super().__init__(access_token=access_token)
    self.file_path = pathlib.Path(file_path)
    self.time_window = time_window

amazon_to_df() #

Read an Amazon Data File to a DataFrame

This is pretty simple, except duplicate header rows need to be cleaned If the exporter included a "subtotal" row, it is removed

Returns:

Type Description
DataFrame
Source code in lunchable_primelunch/primelunch.py
def amazon_to_df(self) -> pd.DataFrame:
    """
    Read an Amazon Data File to a DataFrame

    This is pretty simple, except duplicate header rows need to be cleaned
    If the exporter included a "subtotal" row, it is removed

    Returns
    -------
    pd.DataFrame
    """
    dt64: np.dtype[datetime64] = np.dtype("datetime64[ns]")
    expected_columns = {
        "order id": str,
        "items": str,
        "to": str,
        "date": dt64,
        "total": np.float64,
        "shipping": np.float64,
        "gift": np.float64,
        "refund": np.float64,
        "payments": str,
    }
    amazon_df = pd.read_csv(
        self.file_path,
        usecols=expected_columns.keys(),
    )
    header_row_eval = pd.concat(
        [amazon_df[item] == item for item in expected_columns.keys()], axis=1
    ).all(axis=1)
    duplicate_header_rows = np.where(header_row_eval)[0]
    amazon_df.drop(duplicate_header_rows, axis=0, inplace=True)

    amazon_df = self._remove_subtotal_row(amazon_df)
    amazon_df["total"] = amazon_df["total"].apply(self.currency_to_float)
    amazon_df["shipping"] = amazon_df["shipping"].apply(self.currency_to_float)
    amazon_df = amazon_df.astype(dtype=expected_columns, copy=True, errors="raise")
    logger.info("Amazon Data File loaded: %s", self.file_path)
    return amazon_df

cache_transactions(start_date, end_date) #

Cache Transactions to Memory

Parameters:

Name Type Description Default
start_date date
required
end_date date
required

Returns:

Type Description
Dict[int, TransactionObject]
Source code in lunchable_primelunch/primelunch.py
def cache_transactions(
    self, start_date: datetime.date, end_date: datetime.date
) -> dict[int, TransactionObject]:
    """
    Cache Transactions to Memory

    Parameters
    ----------
    start_date : datetime.date
    end_date : datetime.date

    Returns
    -------
    Dict[int, TransactionObject]
    """
    end_cache_date = end_date + datetime.timedelta(days=self.time_window)
    logger.info(
        "Fetching LunchMoney transactions between %s and %s",
        start_date,
        end_cache_date,
    )
    self.refresh_data(models=[UserObject, CategoriesObject])
    self.refresh_transactions(start_date=start_date, end_date=end_cache_date)
    logger.info(
        'Scanning LunchMoney Budget: "%s"',
        html.unescape(self.data.user.budget_name),
    )
    logger.info(
        "%s transactions returned from LunchMoney",
        len(self.data.transactions),
    )
    return self.data.transactions

currency_to_float(currency) classmethod #

Convert a currency string to float, handling different symbols and formats.

Source code in lunchable_primelunch/primelunch.py
@classmethod
def currency_to_float(cls, currency: str) -> float | None:
    """
    Convert a currency string to float, handling different symbols and formats.
    """
    currency_str = str(currency)
    # Detect locale from currency symbol, or use the system default
    locale_name = cls.CURRENCY_LOCALES.get(currency_str[0], locale.getlocale())
    locale.setlocale(locale.LC_ALL, locale_name)
    # Remove all non-numeric characters except for commas and periods
    currency_str = re.sub(r"[^0-9\s,\.]", "", currency_str)
    # Remove commas and periods, except for the last one
    currency_str = re.sub(r"[,\.](?=.*[,\.])", "", currency_str)
    if currency_str == "":
        return None
    try:
        return locale.atof(currency_str)
    except ValueError as e:
        msg = f"Invalid Currency Conversion: {currency!s}"
        raise ValueError(msg) from e

deduplicate_matched(df) classmethod #

Deduplicate Multiple Connections Made

Parameters:

Name Type Description Default
df DataFrame
required

Returns:

Type Description
DataFrame
Source code in lunchable_primelunch/primelunch.py
@classmethod
def deduplicate_matched(cls, df: pd.DataFrame) -> pd.DataFrame:
    """
    Deduplicate Multiple Connections Made

    Parameters
    ----------
    df: pd.DataFrame

    Returns
    -------
    pd.DataFrame
    """
    deduped = df.copy()
    deduped["duplicated"] = deduped.duplicated(subset=["id"], keep=False)
    deduped = deduped[deduped["duplicated"] == False]  # noqa:E712
    return deduped

df_to_models(df, model_type) staticmethod #

Convert DataFrame to Transaction Array

Parameters:

Name Type Description Default
df DataFrame
required
model_type type[LunchableModelType]
required

Returns:

Type Description
List[LunchableModel]
Source code in lunchable_primelunch/primelunch.py
@staticmethod
def df_to_models(
    df: pd.DataFrame, model_type: type[LunchableModelType]
) -> list[LunchableModelType]:
    """
    Convert DataFrame to Transaction Array

    Parameters
    ----------
    df: pd.DataFrame
    model_type: Type[LunchableModel]

    Returns
    -------
    List[LunchableModel]
    """
    array_df = df.copy()
    array_df = array_df.replace(np.nan, None)
    model_array = array_df.to_dict(orient="records")
    return [model_type.model_validate(item) for item in model_array]

filter_amazon_transactions(df) classmethod #

Filter a DataFrame to Amazon Transactions

Parameters:

Name Type Description Default
df DataFrame
required

Returns:

Type Description
DataFrame
Source code in lunchable_primelunch/primelunch.py
@classmethod
def filter_amazon_transactions(cls, df: pd.DataFrame) -> pd.DataFrame:
    """
    Filter a DataFrame to Amazon Transactions

    Parameters
    ----------
    df: pd.DataFrame

    Returns
    -------
    pd.DataFrame
    """
    amazon_transactions = df.copy()
    amazon_transactions["original_name"] = amazon_transactions[
        "original_name"
    ].fillna("")
    amazon_transactions = amazon_transactions[
        amazon_transactions.payee.str.match(
            r"(?i)(Amazon|AMZN|Whole Foods)(\s?(Prime|Marketplace|MKTP)|\.\w+)?",
            case=False,
        )
        | amazon_transactions.original_name.str.match(
            r"(?i)(Amazon|AMZN|Whole Foods)(\s?(Prime|Marketplace|MKTP)|\.\w+)?",
            case=False,
        )
    ]
    return amazon_transactions

format_currency(amount) staticmethod #

Format currency amounts to be pleasant and human readable

Parameters:

Name Type Description Default
amount float

Float Amount to be converted into a string

required

Returns:

Type Description
str
Source code in lunchable_primelunch/primelunch.py
@staticmethod
def format_currency(amount: float) -> str:
    """
    Format currency amounts to be pleasant and human readable

    Parameters
    ----------
    amount: float
        Float Amount to be converted into a string

    Returns
    -------
    str
    """
    if amount < 0:
        float_string = f"[bold red]$ ({float(abs(amount)):,.2f})[/bold red]"
    else:
        float_string = f"[bold green]$ {float(amount):,.2f}[/bold green]"
    return float_string

merge_transactions(amazon, transactions, time_range=7) classmethod #

Merge Amazon Transactions and LunchMoney Transaction

Parameters:

Name Type Description Default
amazon DataFrame
required
transactions DataFrame
required
time_range int

Number of days used to connect credit card transactions with Amazon transactions

7

Returns:

Type Description
DataFrame
Source code in lunchable_primelunch/primelunch.py
@classmethod
def merge_transactions(
    cls, amazon: pd.DataFrame, transactions: pd.DataFrame, time_range: int = 7
) -> pd.DataFrame:
    """
    Merge Amazon Transactions and LunchMoney Transaction

    Parameters
    ----------
    amazon: pd.DataFrame
    transactions: pd.DataFrame
    time_range: int
        Number of days used to connect credit card transactions with
        Amazon transactions

    Returns
    -------
    pd.DataFrame
    """
    exploded_totals = cls._extract_total_from_payments(df=amazon)
    complete_amazon_data = cls._extract_extra_from_orders(df=exploded_totals)
    merged_data = transactions.copy()
    merged_data = merged_data.merge(
        complete_amazon_data,
        how="inner",
        left_on=["amount"],
        right_on=["total"],
        suffixes=(None, "_amazon"),
    )
    merged_data["start_date"] = merged_data["date_amazon"]
    merged_data["end_date"] = merged_data["date_amazon"] + datetime.timedelta(
        days=time_range
    )
    merged_data.query(
        "start_date <= date <= end_date",
        inplace=True,
    )
    merged_data["notes"] = merged_data["items"]
    deduplicated = cls.deduplicate_matched(df=merged_data)
    logger.info("%s Matching Amazon Transactions Identified", len(deduplicated))
    return deduplicated[TransactionObject.__fields__.keys()]

models_to_df(models) staticmethod #

Convert Transactions Array to DataFrame

Parameters:

Name Type Description Default
models Iterable[LunchableModel]
required

Returns:

Type Description
DataFrame
Source code in lunchable_primelunch/primelunch.py
@staticmethod
def models_to_df(models: Iterable[LunchableModel]) -> pd.DataFrame:
    """
    Convert Transactions Array to DataFrame

    Parameters
    ----------
    models: List[LunchableModel]

    Returns
    -------
    pd.DataFrame
    """
    if not isinstance(models, list):
        models = list(models)
    return pd.DataFrame(
        [item.model_dump() for item in models],
        columns=models[0].model_fields.keys(),
    )

print_transaction(transaction, former_transaction) #

Print a Transaction for interactive input

Source code in lunchable_primelunch/primelunch.py
def print_transaction(
    self, transaction: TransactionObject, former_transaction: TransactionObject
) -> None:
    """
    Print a Transaction for interactive input
    """
    transaction_table = table.Table(show_header=False)
    notes_table = table.Table(show_header=False)
    transaction_table.add_row("🛒 Transaction ID", str(former_transaction.id))
    transaction_table.add_row("🏦 Payee", former_transaction.payee)
    transaction_table.add_row("📅 Date", str(former_transaction.date))
    transaction_table.add_row(
        "💰 Amount", self.format_currency(amount=former_transaction.amount)
    )
    if former_transaction.category_id is not None:
        transaction_table.add_row(
            "📊 Category",
            self.data.categories[former_transaction.category_id].name,
        )
    if (
        former_transaction.original_name is not None
        and former_transaction.original_name != former_transaction.payee
    ):
        transaction_table.add_row(
            "🏦 Original Payee", former_transaction.original_name
        )
    if former_transaction.notes is not None:
        transaction_table.add_row("📝 Notes", former_transaction.notes)
    notes_table.add_row(
        "🗒  Amazon Notes",
        transaction.notes.strip(),
    )
    print()
    print(transaction_table)
    print(notes_table)

process_transactions(confirm=True) #

Run the End-to-End Process

Source code in lunchable_primelunch/primelunch.py
def process_transactions(self, confirm: bool = True) -> None:
    """
    Run the End-to-End Process
    """
    logger.info(
        "Beginning search to match Amazon and LunchMoney - using %s day window",
        self.time_window,
    )
    amazon_df = self.amazon_to_df()
    min_date = amazon_df["date"].min().to_pydatetime().date()
    max_date = amazon_df["date"].max().to_pydatetime().date()
    logger.info(
        "%s Amazon transactions loaded ranging from %s to %s",
        len(amazon_df),
        min_date,
        max_date,
    )
    self.cache_transactions(start_date=min_date, end_date=max_date)
    transaction_df = self.models_to_df(
        models=self.data.transactions.values(),
    )
    amazon_transaction_df = self.filter_amazon_transactions(df=transaction_df)
    merged_data = self.merge_transactions(
        transactions=amazon_transaction_df,
        amazon=amazon_df,
        time_range=self.time_window,
    )
    updated_transactions = self.df_to_models(
        df=merged_data, model_type=TransactionObject
    )
    responses = []
    for item in updated_transactions:
        resp = self.update_transaction(transaction=item, confirm=confirm)
        if resp is not None:
            responses.append(resp)
    logger.info("%s LunchMoney transactions updated", len(responses))

update_transaction(transaction, confirm=True) #

Update a Transaction's Notes if they've changed

Parameters:

Name Type Description Default
transaction TransactionObject
required
confirm bool
True

Returns:

Type Description
Optional[Dict[str, Any]]
Source code in lunchable_primelunch/primelunch.py
def update_transaction(
    self, transaction: TransactionObject, confirm: bool = True
) -> dict[str, Any] | None:
    """
    Update a Transaction's Notes if they've changed

    Parameters
    ----------
    transaction: TransactionObject
    confirm: bool

    Returns
    -------
    Optional[Dict[str, Any]]
    """
    former_transaction = self.data.transactions[transaction.id]
    response = None
    stripped_notes = transaction.notes.strip()
    acceptable_length = min(349, len(stripped_notes))
    new_notes = stripped_notes[:acceptable_length]
    if former_transaction.notes != new_notes:
        confirmation = True
        if confirm is True:
            self.print_transaction(
                transaction=transaction, former_transaction=former_transaction
            )
            confirmation = Confirm.ask(
                f"\t❓ Should we update transaction #{transaction.id}?"
            )
        if confirmation is True:
            response = self.lunch.update_transaction(
                transaction_id=transaction.id,
                transaction=TransactionUpdateObject(notes=new_notes),
            )
            if confirm is True:
                print(f"\t✅ Transaction #{transaction.id} updated")
    return response